Séminaires


Retour à la liste de tous les séminaires


Volume des structures hyperboliques complexes sur les espaces de modules de courbes de genre 0

Le : 21/03/2017 16h45
Par : Vincent Koziarz (Bordeaux)
Lieu : I 001
Lien web :
Résumé : Je montrerai que les métriques hyperboliques complexes définiespar Deligne-Mostow et Thurston sur l'espace de modules de courbes de genre $0$ à $n$ points marqués ${\mathcal M}_{0,n}$ peuvent êtrevues comme des métriques Kähler-Einstein singulières lorsque ${\mathcal M}_{0,n}$ est plongé dans sa compactification de Deligne-Mumford-Knudsen $\overline{\mathcal M}_{0,n}$. J'en déduirai une formule qui calculele volume de ${\mathcal M}_{0,n}$ pour ces métriques, en fonction de l'intersection des diviseurs de bord de $\overline{\mathcal M}_{0,n}$. Lorsque les poids qui paramètrent les structures hyperboliques complexes sont rationnels, on peut montrer en utilisant une idée de Y. Kawamata que les métriques associées représentent la première classe de Chern d'un certain fibré en droites sur $\overline{\mathcal M}_{0,n}$, ce qui permet d'obtenir d'autres formules pour le volume. (travail en commun avec D.-M. Nguyen)