Séminaires


Retour à la liste de tous les séminaires


Estimation par le LASSO transductif

Le : 15/03/2010 11h00
Par : Mohamed HEBIRI (ETH ZURICH)
Lieu :
Lien web :
Résumé : On considère le problème de régression linéaire dans lequel le nombre de variables explicatives p peut être plus grand que le nombre d’observations n. Sous une hypothèse de parcimonie, nous proposons lors de cette présentation une généralisation de l’estimateur LASSO (méthode populaire de sélection de variables), qui prend en compte l’objectif du statisticien. Le problème de l’estimation du paramètre inconnu dans le cadre transductif est par exemple considéré, i.e., une approche dans laquelle la construction de l’estimateur s’appuie sur un nouvel échantillon non étiqueté et pour lequel nous souhaitons réaliser de bonnes performances de prédiction. Du point de vue théorique, nous illustrons nos résultats par des "Inégalités de Sparsité", i.e., des bornes sur l’erreur d’estimation qui font intervenir la parcimonie du paramètre que l’on veut estimer. Nous proposons également un algorithme de type LARS pour fournir une solution approchée de notre estimateur.