Séminaires


Retour à la liste de tous les séminaires


PREQUANTIZATION OF LOGARITHMIC POISSON STRUCTURES

Le : 10/10/2008 14h00
Par : Joseph DONGHO (LAREMA)
Lieu :
Lien web :
Résumé : n Physic and in the context of geometric quantization, the term prequantization is used to denote a special kind of representation of the Poisson algebra. Here, we define the notion of logarithmic Poisson structures as generalisation of log symplectic Poisson structures. We construct on some complex manifold X a new sheaf of Poisson algebra O where for all open set U such that U¿D is not empty, section of O content functions which send each point of D to infinity; where D is a free divisor of X. We end with a generalisation of Visman condition of prequantization of Poisson manifold.