Séminaires


Retour à la liste de tous les séminaires


Topologie de contact et singularités complexes

Le : 22/01/2010 14h00
Par : Patrick POPESCU-PAMPU (Université Paris VII - Institut de Mathématiques de Jussieu)
Lieu :
Lien web :
Résumé : Etant donné un germe de surface complexe à singularité isolée, son bord est une variété compacte de dimension 3 portant une orientation et une structure de contact canoniques. La théorie des déformations de la singularité fournit un nombre fini, à difféomorphismes près, de remplissages de Stein de ce *bord de contact*, les fibres de Milnor de la singularité. C'est un problème très largement ouvert de décrire ces fibres de Milnor parmi les remplissages de ce bord de contact. Je décrirai l'état de l'art concernant ce problème, et en particulier mes contributions faites en collaboration avec András Némethi.